Exercise 1.4.10

Suppose $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+4, u(x, 0)=f(x), \frac{\partial u}{\partial x}(0, t)=5, \frac{\partial u}{\partial x}(L, t)=6$. Calculate the total thermal energy in the one-dimensional rod (as a function of time).

Solution

The governing equation for the rod's temperature u is

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+4 .
$$

Comparing this to the general form of the heat equation, we see that the mass density ρ and specific heat c are equal to 1 and that the heat source is $Q=4$. The thermal energy density e is $\rho c u=u$, so the left side can be written in terms of e.

$$
\frac{\partial e}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+4
$$

To obtain the total thermal energy in the rod, integrate both sides over the rod's volume V.

$$
\int_{V} \frac{\partial e}{\partial t} d V=\int_{V}\left(\frac{\partial^{2} u}{\partial x^{2}}+4\right) d V
$$

Bring the time derivative in front of the volume integral on the left.

$$
\frac{d}{d t} \int_{V} e d V=\int_{V}\left(\frac{\partial^{2} u}{\partial x^{2}}+4\right) d V
$$

The volume integral on the left represents the total thermal energy in the rod, and that's what we intend to solve for. The rod has a constant cross-sectional area A, so the volume differential is $d V=A d x$. The volume integral on the right side will be replaced by one over the rod's length.

$$
\begin{aligned}
\frac{d}{d t} \int_{V} e d V & =\int_{0}^{L}\left(\frac{\partial^{2} u}{\partial x^{2}}+4\right) A d x \\
& =A\left(\int_{0}^{L} \frac{\partial^{2} u}{\partial x^{2}} d x+4 \int_{0}^{L} d x\right) \\
& =A\left(\left.\frac{\partial u}{\partial x}\right|_{0} ^{L}+4 L\right) \\
& =A[\underbrace{\frac{\partial u}{\partial x}(L, t)}_{=6}-\underbrace{\frac{\partial u}{\partial x}(0, t)}_{=5}+4 L] \\
& =A(1+4 L)
\end{aligned}
$$

Integrate both sides with respect to t.

$$
\int_{V} e d V=A(1+4 L) t+U_{0}
$$

The constant of integration U_{0} is the initial thermal energy in the rod. In order to determine it, we will make use of the initial condition $u(x, 0)=f(x)$. Change e back in terms of u and write $d V=A d x$.

$$
\int_{0}^{L} u(x, t) A d x=A(1+4 L) t+U_{0}
$$

Bring A in front of the integral and set $t=0$ in the equation.

$$
A \int_{0}^{L} u(x, 0) d x=U_{0}
$$

Use the initial condition.

$$
A \int_{0}^{L} f(x) d x=U_{0}
$$

Therefore, the thermal energy in the rod as a function of time is

$$
\int_{V} e d V=A(1+4 L) t+A \int_{0}^{L} f(x) d x .
$$

